How much coverage can LTE-M or CAT-M1 provide? It’s a difficult and technical question. In fact, I just finished editing a white paper to answer it, with lots of help and support from 15 other companies (AT&T, Sony, Ericsson, Nokia, Orange, Verizon, KT Corp, SoftBank, NTT DOCOMO, Virtuosys, TelcomSel, KDDI, Sequans, Altair, SK Telecom). The paper is a bit long and on the technical side, so I thought I would summarize it here in a blog.
As we know, LTE-M is a Low-Power Wide-Area (LPWA) technology that enables low-cost devices for the Internet of Things (IoT), but the actual amount of coverage enhancement it provides has never been properly determined. This created uncertainty about whether LTE-M could suitably address IoT applications that need deep coverage performance, such as water metering. The 3GPP has published coverage targets, but targets are sometimes met, sometimes not met, and sometimes exceeded, thus Sierra Wireless, and the companies who worked with us on the paper, recognized that it’s very important to understand exactly how much coverage LTE-M can actually provide.
The other problem with using the published 3GPP targets is that the assumptions behind the targets are different, so you can’t simply grab those targets and compare them fairly. Thus the paper also goes into how these targets are calculated and the assumptions behind them, so a fair apples-to-apples comparison can be made. The 3GPP specified coverage targets in terms of Maximum Coupling Loss (MCL). MCL is a very common measure to describe the amount of coupling loss (in dBs) at which a service can be delivered. For example, without coverage enhancement, legacy LTE systems (before Release 13) can operate up to approximately 142 dB MCL.
Moreover, as the name suggests, LTE is built for Long-Term Evolution, which future-proofs it for the introduction of new communications technologies, including 5G. For utilities, this means not having to face the specter of “ripping-and-replacing” all their networking infrastructure every five to ten years. Instead, the standard will provide a smooth migration path that allows them to maximize the value of their existing investments while taking advantage of new technological innovations.
By following these best practices, and by working with experienced LTE partners, utilities can take advantage of private LTE’s flexibility, control, and cost benefits to build a global standards-based, customized, and highly resilient communications network that supports their digital transformation.
Flexibility goes beyond just applications and geography though. Since LTE is standards based, with private LTE, utilities can even use MNO’s LTE networks as backup – further increasing the resiliency of their connectivity.
A private LTE network also provides utilities with a high level of control over their network’s security and other management functions. With private LTE, utilities can control every aspect of their network – for example, when maintenance is performed or when software upgrades or security patches are needed, they can be scheduled accordingly. Given that a utility may have hundreds or even thousands of devices in the field, strong network management capabilities are essential; they streamline operations while enhancing overall security.